Lipschitz Functions on Topometric Spaces
ثبت نشده
چکیده
We study functions on topometric spaces which are both (metrically) Lipschitz and (topologically) continuous, using them in contexts where, in classical topology, ordinary continuous functions are used. We study the relations of such functions with topometric versions of classical separation axioms, namely, normality and complete regularity, as well as with completions of topometric spaces. We also recover a compact topometric space X from the lattice of continuous 1-Lipschitz functions on X, in analogy with the recovery of a compact topological space X from the structure of (real or complex) functions on X.
منابع مشابه
Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملCompact composition operators on certain analytic Lipschitz spaces
We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.
متن کاملQuasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions
We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...
متن کاملWeighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملGrey Subsets of Polish Spaces
We develop the basics of an analogue of descriptive set theory for functions on a Polish space X. We use this to define a version of the small index property in the context of Polish topometric groups, and show that Polish topometric groups with ample generics have this property. We also extend classical theorems of Effros and Hausdorff to the topometric context.
متن کامل